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ABSTRACT

0.' 't equations with a set of conservative and a set of non-conserva-
tive perturbing potentials are considered. Scheifele's DS formulation of
these equations has dependent variables similar to Delaunay's orbital
elements with the true anomaly as the independent variable. Efficiency
curves of computing cost v.s. accuracy are constructed for ‘dams integra-
tors of orders 2 through 15 with several correcting algorithms and for a
Runga-Kutta integrator. Considering stability regions, choices are made
for the optimally efficient integration modes for the DS elements. Inte-

grating in these modes reduces computing costs for a specified accuracy.
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1.0 INTRODUCTION, CONCLUSIONS

1.1 Introduction, Summary

This report is one study which is part of a larger NASA effort
by many researchers to increase the accuracy and decrease the computing
costs of generating orbits. The results will improve efficiency of
mission design, operations, scientific applications and other processes
where orbit generation is an integral part.

By a "correcting algorithm” is meant a particular predict-correct
process such as PECE which is a prediction followed by a function
(differential equation) evaluation, a correction, and another evaluation.

An "integration mode” consists of an algorithm (or variable algorithm
method) and an order (or variable order) method.

An " orbit generatcr” consists of the formulation of the equations
of motion (Cowell, VOP, DS, ...), an integrator, and an integration
mode .

An "efficiency curve"” is a plot of error v.s. cost for one problem
and one orbit generator.

Since the cost of a particular stepsize depends on the algorithm,
the cost of function evaluations on the formulation, and the cost of CPU
time on the computer irstallation, there is no universally acceptable
cost scale. All three scales are given in our figures.

Imagine placing a set of efficiency curves, each with a different

JPL Technical Memorandum 33-710 1



algorithm (e.g. Figures 9 - 12 for J2), in order of increasing influence
of the corrector to form a three dimensional graph of h v.s., error v.s.

algorithm. Each figure is a cross section of constant "algorithm".

ERROR, m

MAXIMUM
ERROR PLANE

EFFICIENCY ENVELOPE,
SURFACE

ALGORITHM CONTOUR CURVE,
CROSS SECTIONS

2 JPL Technical Memorandum 33-710



Definition: The "efficiency envelope" is the surface constructed
by choosing the low points in the above schematic by choosing
that order giving the smallest error for each algorithm and step-
size.

Choosing the low points in each crcss section, we get a contour curve
of the efficiency envelope. This process optimizes over the variable
"order" leaving the other parameters of algorithm, integrator, and formulation.
Superimposing the contour curves, as in Figure 16, we project the efficiency
envelope onto the heerror plane. Figure 17 does the same for the J2 and
lunar perturbations.

We interpret optimizing over the parameter'algorithm'as specifying
an h-algorithm plane perpendicular to the error axis (at 10 @ in the
schematic) and searching the lower-right (large h) side of the inter-
section of this plane with the efficiency envelope. We thus choose the
algorithm and order which allows the largest h and the smallest computing
time, subject to the 2rror criteria. The variable correcting and partial
correcting algorithms (such as used in GSFC program GIDS) essentially
refine the grid in the algorithm dimension thus allowing a choice of a
more optimal integration mode,

This report accomplishes this optimization for the DS formulation [15]
and Adams fixed step integrators. A range of a factor of 103 in h gives
a complete idea of stability and -.ccuracy that is possibie. 1In one
study Ell] the Cowell formulation is optimized over several fixed step
integrators. Another study [1] shows the DS formulation compares favorably
to others. Two relatively new integrators that should be further studied

due to their increased accuracy and stability are the back-correcting [2]
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and the cyclic [5, 21] in particular the optimized cyclic [lh].

The overall effort is to search for the most efficient orbit genecutor
by considering the parameters "formulation"and "integrator, thus adding two
dimensions to the geometry for a total of 5. Analytical studies such
as [127and [17 ]will help fill in the now four dimensional efficiency
envelope surface by considering relationships between formulation and
integrator. So will numerical studies that consider different formulations

such as [1], [4], [9) [13] [29], [20].

Statement of the Overall Effort:

Minimize cost as a function of formulation, integrator, integration
mode, error

Subject to the Constraint: error < k.,
The approach presently taken for this enormous, nonlinear, constrained
optimization problem is essentially a numerical mapping routine, i.e.,
choose an orbit, formulation, integrator, integration mode, stepsize,
and then integrate to get a point on the surface. This approach is quite
costly due to the many parameter combinations that must t: studied. Using
emperical experience and analytical studies will reduce the number of
parameter combinations it is necessary to consider. We also recommend
studying the feasibility of using a more efficient numerical optimization
procedure [lh] to find the overall most efficient orbit generator for
each problem. Once done the savings in applying these generators will

be considerable,
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1.2 Conclusions

1. In the DS formulation CN (true anoma'y) and o, (time element) are

the only variables termed "fast" and o, is 105 faster than 0.

With J,. the variation in o_ and a6 increases to the order c¢* ol.

2 5

2
With J2 and lunar perturbations as, °6’ and a7 become 10 to
103 faster than o)

efficiency decreases by about 103 (R-K by'107) and stability problems

s their fastest variation is near apogee, Adams

enter, For stability, stepsize control is advisable in this vicinity,
but this should be done carefully.
The dynamic and numerical stability of the OB formulation depends
on that of the DS and on the second partials of the DS-0OB generating
function.
The order 7 R-K integrator has the slope of an order 10 method, while
Adams generally act like they are lower order than they ideally are.
Despite this, Adams fixed step is overall more efficient than R-K
fixed or variable step. (At higher accuracies with lunar perturbations
R-K variable step is slightly better.) For best efficiency, Adams
variable step should probably be used near perturbations other than
those due to the central body.

The remaining conclusions are concerned with Adams integrators.
Numerically DS is very stable with J2; order 15 is stable at only 7

steps per revolution. With the moon order 8 remains stable at this

large h but higher orders have smaller stability regions. The stability

JPL Technical Memorandum 33-710



region becomes smaller with more corrections, also.

5. With J2, higher orders and more correcting generally yield steeper
curves; however, orders greater than 12 do not significantly improve
efficiency. For small h all ori.cs are parallel with slope 1.0 or
2.0 depending only on algorithm. With J2 and moon at all h, the
curves for different orders generally stick to a tight bundle with
slope 1.5 to 2.5 depending only on algorithm. This behavior is not
typical truncation or roundoff. The explanation is hypothesized to
lie in the truncation error coupling of formuiation to integrator.

6. With Jos PE(CE)2 order 12 or 15 is most efficient for errors < 1 m.
The most efficient for larger errors is PEC order 12 or 15. With
J, and moon, PE(CE)2 order 8 is most efficient and stable for errors

€ 100 m. Fer larger errors PE" order 6 is best.

6 JPL Technical Memorandum 33-710



2.0 PROBLEM FORMULATION

2.1 Problem Sets

The greatest use of this formulation is likely to be on highly

eccentric orbits. The orbits considered have initial conditions:

x(1) = .900000000000000D Ok (1) = -.112059094115122D O1
xzzg = -.100000000000000D OW a(2) = -.17%205613794k42D 01
x(3) = -.800000000000000D 03 o(3) = .276592819001892D 01
X(k) = .260000000000000D 05 o(l) = -.728599465040327D G5
X(5) = ~-.412311000000000D 01 o(5) = .241815405929112D 06
Xx(6) = .800000000000000D O1 o(6) = .716341942591542D 05
X(7) = ~-.200000000000000D 01 a(7) = .678768900000000D 05
X(8) = .135870769597975D O1 o(8) = .135870769597975D Ol

L}
a=1.5x 10° km, e = .96, i = 18%0 , p = .58 x 106 secs = 6.8 days,
is the Cartesian position in km is the
where X, 2, 3 P nkm, X5 6, 7
Cartesian velocity in km/sec, X, is the physical time, Xg is the total
energy, al 8 is the DS vector described later, and &, e, i, and
, ...,

p have the usual meanings.

We consider two sets of perturbations: (1) the full J

57 conservative,

L (%3)? 10
term of the Earth's potential=- SE (3 - (;3) where ¢ = 2.627622224 x 107 .
r
(2) The above J. term plus the non-conservative (time varying) force due

2
to the fictitious moon moving in a circular orbit at a distance 3.8hhx105 km
from the Earth with an angular velocity 2.66 x 10-6 radians/sec
(p = 27.4 days) and gravitational constant times mass = 4902,66. This
fictitious moon will have the same effect on the integrators as the real
moon and will avoid ephemeris difficulties in this testing phase of the

work.

A sketch of the geometry during the first orbit is shown in Figure 1.

JPL Technical Memorandum 33-710 7



Figure 2 graphs the Earth-satellite distance, r, and the physical time,

X,., v.s. the true anomaly, T, for Je only. Figure 3 shows the same for

J2 and the moon. The final time specified on input is tr = 1.494 x 106 secs,
Jjust before three revolutions and just after apogee. With J2 only

Tr = 16.895 radians, r = 2.756 x ].05

5

km and with J2 and the moon Tr = 16.899

radians, r = 2.736 x 10 k.

2.2 Formlations

In integrating elliptical orbits mmch overhead and interrolation
error can result from using a variable step algorithm to reduce local
truncation errors near pericenter. One means of avoiding this is to
use automatic time step regulation [10:], (16]. Transform the independent
variable from t to s by using
(2.2-1) dt/ds = cr" .

Taking equal steps of size As will automatically yield smaller time
steps, At -crn As, when r is small. Thus, the choice of n affects the
efficiency of the integration {12].

An interesting analysis by Velez [17] shows the effect on the dynamic
stability of the transformed equations of motion and, siace this; is
coupled to the numerical stability of the integrator, the stability of
the whole orbit generation process is also affected by the choice of n.

He finds n = 1.5 best for the time regularized Cowell formulation with
a fixed step Adams integrator. The choice is difficult since small
n yield less dynamic stability and larger n yield less numerical stability.

Another problem with time regularization is that to get the position

8 JPL Technical Memorandum 33-710



at a final physical time the time ejuation (2.2-1) must be integrated
glving timing errors. Multiplying this error by the velocity we get

an implicit error in the position which must be added to the explicit
position error. Several researchers, including Baumgarte, Stiefel [3],
and Nacozy, have impruved timing accuracy and stability by adding control
terms or energy surface considerations to the equations of motion.

In integrating orbits that are basically two body, advantage can
be taken of the two body analytic solution by transforming the dependent
variables to the two body elements. These "variation of parameter”
methods exactly solve the two body portion of the motion [16] and allow
larger integration steps to be taken. Variable stepsize is still advisable
since the elements change fastest near pericenter.

For this reason, authors have recently combined the above independent
and dependent variable transformations in the KS, DS and other formulations
f[15]. Tnese formulations exactly solve the two body portion and have
automatic stepsize and energy control by including time and energy elements
in the canonical formulation, as opposed to adding the time equation and
control terms onto the Cowell formulation. The remaining problem with
these formulations is that some of the dependent variables are slow and
some are fast. Traditionally, "slow" means the variable is constant in
unperturbed motion. The integration step must be smaller to account for
the fast variables. Analytical [15] and numerical [7] averaging techniques
are being formulated which smooth out these fast variations.

Two Scheifele [157 DS formulations are considered in this report.

JPL Technical Memorandum 33-710 9



In the first, we begin with the canonical equations of motion for the
Cartesian phase space dependent variables with time as the independent
variable. Phase space i. extended by adding the energy-time conjugate
dependent variables. This allows transformation to an independent
variable which is linear in the true anomaly. Canonical transformations
are made to the spherical phase space then to elements similar to
Delaunay's. Of these dependent variables, seven are slow and one is
fast (the true anomaly). The fast variable is very fast and the equations
of motion have periodic terms multiplied by the fast variable for non-
conservative forces (mixed secular terms). These stability and accuracy
reducing problems are eliminated by further transforming the depend .t
and independent variables,

The DS independent variable is thus the true anomaly pius a constant

and the dependent variables are:

o, = § = true anomaly fast
o, =g = argument of pericenter slow
03 = h = longitude of ascending node slow
o, = L = time element fast
05 =3 slow
06 = G = angular momentum slow
07 = H = third component of angular momentum slow
og = L = - energy slow

The angular momentum element (integral in Kepler's second law) is

10 JPL Technical Memorandum 33-710



used both as a dependent varlable and in transforming the independent

variable since from (2.2-1) 2 g% = k. The relations between the

Cartesian extended phase space vector (2.1) and the DS elements are:

h- 8
]

sign (position-velocity) arccos 02-2-5)

er
550
arcsin (r < i)- '/

G
- arctan ('5;)
2

o e F Rty

6=G-\/Gz+2r2V+g-L-

(1 -]
"

-4
"

-
)

(]

= llposition x velocityl!
H=G
-3

2
L= x8=-§ velocity® + % -V
where:
(Gl’ G, GB) = position x velocity
V = perturbing potential
uw = gravitational const. x (M + m)

ts Xh
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sin i = sign (H) /1-—";-
G

=1 (g -3+
p=2(6-3+5)

r=p(l - e cos ;6)"l

E:Zarcta.n( i;: tan§¢)

Details of transforming the differential equations to get %% are given

in [16]. This is integrated to get an « value which is transformed back
to x.

Figures 4 and 5 graph these elements v.s. true anomaly for the first

revolution for Iy only, and Figures 6 and 7 for J5 and the moon. Except

for °1 and o> they are periodic and the range of variation of o), is by

far the greatest. Even though as and o are constant without perturbations,
as soon as J2 is added their variation is of the order of al. Any analysis

based on their variation remaining small must be modified. o, and 03

07 remains constant with J2 and °8 with all

conservative perturbations, as expected.

also vary but quite slowly.

when the moon is added, the variation of 05’ 06, and a7 is 102 to

103 greater than that of o, but it is still less than o). The remaining
elements vary slowly. The greatest variation is near T = 4.4 which is
at apogee (the point nearest the moon's orbit (Figure 3) not the point
nearest the moon (Figure 1)).

12
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Since the DS formulation was geared toward the central body being
the main potential source, it is not surprising that the moon causes
such gross "misbehavior" which can cause stability and truncation pro-
blems. This points to the necessity of using stepsize control when
perturbations other than the central body are present.

In the second formulation considered, Scheifele has tried to slow
the fast variables by analytically averaging the high frequency terms
due to J2 out of the equations by applying the von Zeipel algorithm.
Ideally, this will allow larger stepsizes near the central body which

will more than compensate for the increased computing necessary to make

the extra transformation. Using the generating function Sl, a transfor-
mation is made from e to o', the 'bblateness elements” OB. These"inter-
meiiate"elements are almost canonical since terms of order (2 have been

ignored in the transformation.

if qQ=G- %8+t and
2y2L

e

2l

(2.2-1) 5, = (- vy

le leb
+-5-—) sin¢+§;{$in(¢"‘28)

+

® g UM
2|

1l eb
sin(2p + 2g) + A %a sin(3p + 2g)

then the relation between o and o' is:

/?Sl asl asl asl
(2.2-2) U(a)ga"(\a—a;’ -0-,'3‘0—8, "E, voey ‘S;: =0+(S(U) .

JPL Technical Memorandum 33-710 13



In transforming the differential equations, we first compute % as for

the DS elements.

From (2.2-2), we compute the Jacobian

(2.2-3) 2 .1+
o [
and form
d—ﬂ—‘_=:ﬁ—.-d_a.=d_a‘*€_a§$ -
ds a; ds ds a; das

The dynamic and numerical stability of the OB elements thus depends on
that of the DS elements and on the second partials of the generating

function sl. Integrating %'- yields a value of &¢'. To find ¢« from o',
we have a(0') = o' - ¢S(o) which is a nonlinear transformation and must

be iterated, thus increasing the computing time. This transform recovers

the J2 high frequency terms. The transform from @ to X recovers

the two body portion and yields the Cartesian state. These back trans-
forms must be done at each step in order to evaluate the forces (Section

3.2).

3.0 _EQUATION INTEGRATION

3.1 Integrators

The orbits are generated with two basic types of integrators. The
first is the seventh order Runga-Kutta method RK7(8) of Fehlberg [6 ]

This is the highest order R-XK method in use today. An estimate to the

14 JPL Technical Memorandum 33-710



local truncation error is obtained by evaluating its leading term.
Thirteen function evaluations per step are required. Following these
evaluations the local truncation error estimate is compared to a user
supplied tolerance, TOL. If the estimate exceeds TOL, a smaller step-
size is chosen and 12 of the evaluations are repeated with this new
stepsize. The stepsize is reduced until the estimate is less than TOL.
Then this value for the solution is accepted at this step and we proceed
to the next step with a specified stepsize. An option is available to
override the stepsize conirol and integrate with a fixed stepsize.

The second integrator used is the Adams, nonsummed, ordinate form
[8])- 1In this study, we used fixed stepsizes; the smallest being 1073
of the largest which is a greater range than comparable studies.
This was done to get a complete idea of the range of stability and

accuracy that is possible with the DS elements. The orders used range

from 2 to 15. Order 15 is three or four orders higher than

commonly used in orbit generation. The fixed correcting

algorithms used are PE, PEC, PECE, and pE(CE)2 which require one to
three function evaluations per step. The coefficients were computed
in 25D, using a CDC 3350.

The program will accept cyclic integrators [5], [18], [21] and a
thorough study using these should be done. The optimized ones [1hJ are
especially more stable and accurate than the traditional muitistep
integrators and relatively improve with high eccentricities. With

stepsize control they will probably require fewer stepsize changes.

JPL Techn.cal Memorandum 33-710 15



3.2 Program Description

Two programs are used., The first is for the DS elements.

T~

T~

MAIN |"\\ -
I \\

INTEG

=

A\ /

e

{ { '

4

COTODS DSTOCO ‘ ELDEEQ

L

FORCES

MAIN: Initializes Cartesian vector, transforms to initial DS vector,
calls either RK or INTEG, then transforms final DS to Cartesian
coordinates,

DSTOCO, COTODS: Transformations between DS and Cartesian vectors

(Section 2.2).

FORCES: Computes potentials and forces in Cartesian coordinates,

ELDEEQ: Converts potentials and forces from Cartesian coordinates to

be used in the DS differential equations for g%.

_RK78: Runga-Kutta integration from one step to the next (Section 3.l1).

16 JPL Technical Memorandum 33-710



INTEG: Uses RK78 to compute starting values for traditional or cyclic

multistep, predictor-correcter integration (Section 3.1) step-
ping along in true anomaly (T) until X, > final time (t f). Now
consider X, to be a function of true anomaly X, (T). We wish

to find that T value, T,, where xh(rf) - t,. = 0. Using Newton's

£ f

method:
xh(Ti) -t

(3.2-1) T = -
LS () -t

ivl ~

where the denominator is approximated by xh(Ti) ;xh('ri-l)

Ty - Tia
Ti +1 then converges to Tf. Iteration is stopped when
T:i. - Ti S DITOL which is specified on input. Evaluating the

DS vector at T Re '1‘f will yield Xu s t . and this final solution

i+l f
will automatically include any timing error (Section 2.2).
RK: Controls RK78 as it steps along in true anomaly (Section 3.1) until

xh > tf then proceeds as in INTEG.,

JPL Technical Memorandum 33-710 17



The second program is for the OB elements.

MAIN
‘ INTEG ’
| /
RKT78 ]
‘ r
’ DSTOOB , OBTODS | Ah__ | OBDEEQ #l MATRIX
t .t
l COTODS DSTOCO - ELDEEQ
FORCES ,

MAIN: Initializes Cartesian vector, transforms to initial DS and 08
vectors, calls either RK or INTEG, then transforms final OB to
DS to Cartesian coordinates,

DSTOOB, OBTODS: Transformations between DS and OB vectors (Section 2.2).

ol )
MATRIX: Computes the .Jacobian d_?a__ (Section 2.2).

-
. 9 prom do. do
OBDEEQ: Computes i from ~— i

3
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INTEG and RK now integrate the OB vector. At this writing, several
bugs sre being worked out of the OB version of the program, so we

have no numerical results yet to report. A preliminary version of this
program with the Runga-Kutta integrator is due to G. Schie:fele [15].

4.0 EFFICIENCY

The reference solutions were generated by converting the program
to a CDC 3350 with 25D and running it with the R-K variable step with
T0L = DITOL = 1078 (Section 3). Having both Cartesian and DS solutions
allows an analysis of the effects of the transformations. We are con-
fident the reference solutions are accurate to 16D. Figuvwes 2 through 7
graph the solution.

Comparison runs for the DS elements were made on a Xerox Sigma 7
which has the same word structure as the IBM 360 (16D), allowing compar-
isons with runs on that machine. A total of 48 curves were generated
(Figures 8 through 15 and Table 1) each with approximately 6 stepsizes,

3

ranging over a factor of 10°, for a total of 288 successful runs.
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TABLE 1

SUMMARY OF EFFICIENC. CURVES FOR THE DS FORM.IATION

Fig. Perturbations Integrator Algorithm Orders
No.
fixed step
8 J2 only RK variable step 7
fixed step
J2 and moon R variable step 7
9 J2 only Adams PE 6, 15
J, and moon Adams PE 6, 15
10 J2 only Adams PEC 2 - 15
11 J2 only Adams PECE 2 - 15
12 J, only Adams  PE(CE)® 2 -15
13 J2 and noon Adams PEC 2 -15
1h J5 and moon Adams PECE 2 -15
15 I and moon Adams PE(CE)2 2 -15
16 J2 only Adans all envelope
17 J2 and moon Adams all envelope

The first vertical scale is the Euclidean norm of the Cartesian
position error in meters.
timing error,
divided by the final r value, A relative error of 1o'u, for example,

means there are four significant digits of accuracy in the satellites

position.

20

The second scale is the relative error which is the error

This includes the implicit error due to the
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The first horizontal scale is the'effective stepsize’y h, in radians.
h is normalized to be the actual stepsize for the standard PECE (2 function
evaluations per step) and is adjusted for other correcting algorithms
according to the number of function evaluations. This enables a direct

comparison of computing times for different algorithms. The formula is:

- 2(arc length)
(total # fctn. evaluations)

(4.0-1) h

which is twice the average distance between evaluations. The second
and third scales are the tctal number of evaluations and the Sigma 7
CPU seconds not including factors for the amount of core used or swaps.
This will allow comparisons with other machines.

Let p = the order of the integrator and d depend on the integrator
and on the high derivatives of the differential equations thus on the
formulation used. In the log-log graphs in the truncation limited region,
ideally:

(4.0-2) log (error) Splogh + logd .

The curves should be straight lines with slope = order. A good combination
of formulation and integrator will yield a smaller d, thus yielding an
overall efficiency improvement. This is one reason for optimizing inte-
grators [1k4, 18, 19] in addition to improving stability, and for considering

the combined effects of formulation and integrator [l&,l?].
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4.1 Runga - Kutta
In Figure 8, the points for h 2 .2 should be ignored since most of

the function evaluations are involved in the finishing procedure (Section
3.2) and do not accurately represent efficiency. Otherwise, the curves
are generally linear with both fixed step slopes = 10 which is three
orders higher than expected. The variable step curves are even steeper,
so much so that the choice of TOL is very critical to the propogated
error.

The moon's perturbation increases the error by a factor of 107

to
108, possibly caused by a larger value of d (4.0-2). This accuracy

degradation is not as great with Adams integrators. The computing time
is simmltaneously increased due to the additional computations. Notice

the two CPU scales.

4.2 Adams, Conservative Perturbation

Figures 9 - 12 show quite a regular behavior and all modes remairn
stable. Figure 12, PE(CE)Z, curves exhibit what might be termed ideal
behavior. What we will call a'pivot point"occurs at (h, error) =
(.3, 103 m) where all curves cross almost simultaneously. At smaller
h, higher orders are more efficient; at larger, they are less efficient.
The lines should cross due to the expected different slopes (4.C-2) but
this does not explain why they all cross at nearly the same point.

At the largest h run, we are taking only about seven steps for a

whole vrevoluticn. The stability is remarkable. At even larger h, the
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higher orders will become unstable first.

As h decreases, the errcr reaches a minimum then increases as
roundoff takes over causing a'dip near (h, error) = (.5, 13.5 significant
digits) which is almost all we can expect from this 16D machine. The
orders 2 and 4 truncation errors are still too large for the total error
to te seriously effected by roundoff. At even smaller h, these should
also show a dip.

Figures 9, 10, 11 resemble one another. They have what look like
truncation limited regions with the pivot point and dip region moving
to the left in h as the corrector influence increases in a definite

trend.

aigorithm PE PEC PECE PE(CE)2

pivot h 1.6 .6 .3

< .06

~~

dip h .6 .2 1

However, these dips occur at less than 9D, implying their cause is not
roundoff.

As h decreases, all orders become parallel with slope = 1 for PE
and slope = 2 for PEC and PECE (Table 2). This is not a truncation
limited region since the slopes are equal and not a roundoff limited
region since errors decrease with h. We hypothesize the explanation for
these phenomena lies in the truncation error coupling of the formulation

to the integrator.
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k.3 Adams, Non-Conservative Perturbation

Figures 9, 13, 1k, 15 with the lunar perturbation are no* as regular
as with J2 only and the higher orders do become unstable. In Figure 15,
the PE(CE)2 curves are nearly straight lines at small to medium h with
higher order methods being steeper as expected in a truncation region
(4.0-2); however, the near equality of the slopes was not expected.
At the smallest h run, truncation is still too large for roundoff to give
a dip.

There is a pivot near h = .05; however, to the right there are
convex and concave curves, so the picture is not as clear as with J2 only.
Orders 10, 12, and 15 became unstable and the higher orders have
smaller stability regions. It is surprising the order 8 remained stable

at h giving only 7 steps per revolution.

Figures 9, 13, 14 resemble one another. Orders 12 and 15 always
become unstable after having a dip at error values too large to be caused
by roundoff. The point of instability (and the dip) moves to the left
with increasing corrections (as with J, only), so the stability region
becomes smaller with iunrreasing correcticas.

There appear to be no trunction nor roundoff regions at all. The
curves just twist around each other in a tight bundle with any order 4 - 8
being as efficient as another (2 is also close), except the 12 and 15
are more efficient at the dip and less when they are unstable. The
bundle has slope approximately 1.6 ror PE and 2.3 for PEC and PECE which

is analogous o0 the small h result for J, only (Table 2).
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TABLE 2

SLOPES OF EFFICIENCY CURVES

,Algorithm Stepsize Orders of Adams Methods
; Range 2 L 6 8 10 212 15

It- - ————— . —— e —  c———
5 > Only

PE small - - 1.0 - - - 1.0
. medium - - * - - - *
: large - - 3.9 - - - 15.0
1
!  PEC small 2.0 2.0 2.0 2.0 - 2.0 1.9
: medium 2.0 2.0 2.0 * - * *
! mge 2.7 ho3 500 6-6 - 8.0 12.0
' PECE small 2.0 2.0 2.0 2.0 2.0 2.0 2.0
- medium 1.8 * * * » *
, large 2.8 4.0 4.8 6.0 7.5 8.0 17.0
; PE(CE)2 small 2.0 4.0 * -1.0 -1.0 -1.0 -1.0
; medium 1.7 4.0 6.3 * * * *
: large 2.8 4.1 s5.0 6.6 8.6 8.0 12.0
-
i J2 and Moon
| PE all - - 1.6 - - - *
| pEC small 2.0 2.6 2.6 2.6 - 2.7 2.5
| medium 1.8 2.2 * 1.7 - * *
5 1&1‘89 2.1‘ 2.3 * 2.7 - L ®
| PECE small 1.9 2.6 2.8 1.8 - 2.7 2.5
5 medium 1.9 2.5 2.6 2.2 - 6.4 *
i lu.ge 2.3 20" 108 109 - [ o
i PE(CE)2 small 1.9 3.9 6.0 6.7 - 7.5 7.5
i medi\lm 203 uoe 5.0 302 6:7 «©
; large 2.5 2.1 2.4 2.0 o o

[

# Large curvature in this region
- No runs
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4 4 Efficiency Envelopes, Comparisons

In the R - K curves (Figure 8), we see that with J, only the fixed
step algorithm is more efficient. This is probably because the step-
size control is not optimal. With the moon variable step is more effic-
ient for errors < 10 meters, but less efficient for larger acceptable
errors. These results and Figures 2 and 3 show that stepsize control
is not needed fur J, only, but the stepsize at apogee is 1/10 that at
perigee with the moon indicating that stepsize control is necessary in
this case.

Aligning the vertical and horizontal scales of the J2 only curves
allows comparison of the most efficient orders for each algorithm in
Figure 16. There is one curve for each algoriihm. The PEC graph was
shifted slightly to the left of the PE graph due to the slightly greater
CPU time. Algorithms with more corrections are generally steeper and
there is an algorithm pivot point near (h, error) = (0.18, 1 m). These
phenomenon resemble those of the different orders of a single algorithm;
more corrections and higher order both lead to steeper curves (Table 2).
The stability intervals are very large; not exceeded by our largest h.

Using orders greater than 12 generally does not significantly
improve efficiency. Orders 12 and 15 dominate Figure 16.

The most efficient integration mode for errors < 1 m and h < .18
is PE(CE)2 order 12 or 15. The most efficient for larger errors is PEC
order 12 or 15. The maximum achievable accuracy is 13.5 D on the 16 D

machine.

26 JPL Technical Memorandum 33-710



The most efficient orders for each algorithm with the lunar pertur-
bation are sketched in Figure 17. More corrections and higher order
lead to steeper curves and there is a pivot near (h, error) = (0.03, 100 m),
but these phenomenon are not as clear as with J2 only. More perturbations
tend to confuse the picture, The stability intervals are still large,
expecially for orders < 8. Orders 6, 12, and 15 dominate this figure.

Since orders 12 and 15 become unstable and in their stability regions
they are not much of an improvement over lower orders, it seems safer
to use lower orders. The most efficient and reliable integration mode
for errors <100 m and h < .03 is PE(CE)2 order 8. For larger errors
it is PEC order 6. These are the same two algorithms as without the
moon, but stability has forced us to lower orders.

Since the stability region for Adams PEC is ideally smaller than
PECE and even PE [17 Table l], it is surprising that with the DS
formulation PEC is best at large stepsizes.

Comparing Figures 8, 16, 17, we see with J, only RK fixed step is
as efficiert as Adams PE(CE)2 order 15 for errors < 1 m, but for larger
allowable errors Adams PEC order 12 is most efficient. For J2 only, the
Adams integrator is more efficient at all stepsizes.

With J2 and lunar perturbations RK variable step is most efficient

for errors < 100 m, but for larger errors Adams PEC is better.
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Fig. 1. Earth-Moon-satellite
geometry: roughly sketeched in the
same plane; during first orbit:
time marks on Moon and satellite
orbits are 100s; distance in km;
perigee and apogee marked P and A,
respectively
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